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Optical limiting and intensity-dependent diffraction from low-contrast nonlinear periodic media:
Coupled-mode analysis
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The method of multiple scales is used to develop a procedure for obtaining coupled-mode equations in
low-contrast nonlinear photonic crystals periodic in one, two, or three dimensions. Coupled-mode equations for
three coupled modes in a two-dimensio(2D) hexagonal lattice are obtained in this way and solved numeri-
cally. We show that 2D low-contrast nonlinear photonic crystals support optical limiting and intensity-
dependent diffraction.
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I. INTRODUCTION The presence of a perturbation, no matter how weak, pre-
Nonlinear photonic crystals may enable ultrafast all-Cludes independence in the evolution of the normal modes of

optical signal processing. One-dimensionally periodic nonihe unperturbed medium. However, for a sufficiently weak
linear media exhibit switching1-5], pulse compression nonlinearity, there will exist two distinct scales in space and
[6,7], and limiting [8,9]. Analysis of these devices is facili- time, one proper to the unperturbed normal modes of the
tated by development of one-dimensiordD) nonlinear linear photonic crystal, the other to the distances and times
coupled mode equation€ME’s) [8,10]. over which they interact because of the perturbafi26].

We develop herein, using the method of multiple scalesThe evolution of an electromagnetic field within a nonlinear
CME’s for low-contrast Kerr-nonlinear photonic crystals in periodic medium is thus conveniently expressed in terms of
one, two, or three dimensions. By low contrast we intend thahormal modes modulated by slowly varying envelopes. Con-
the variation in the linear index of refraction be small com-structing the fields in this manner is central to the method of
pared to the average index. We place our emphasis on thiaultiple scales, which is the basis for our analysis.
class of media because proposals for devices based on it The method of multiple scales is a commonly used per-
show great promisg5,8,10,11 and because a recent experi- turbative techniqué24,27,28. It has been deployed previ-
mental realizatiorj12] and characterization of such a device ously in, for example, deep nonlinear one-dimensional grat-
suggests the need for further theoretical development.  ings[22,29 in which the envelope modulating a Bloch mode

The CME's derived in this paper allow us to analyze theof the periodic unperturbed medium was found to satisfy a
intensity-dependent behavior of multidimensionally periodicnonlinear Schrédinger equation. More recently, the technique
low-contrast nonlinear media. Intensity-dependent diffrachas been employed in studying high-contrast nonlinear pho-
tion in 1D structures underlies phenomena such as opticabnic crystals[23,30. The equations governing the enve-
bistability [13,14, which in turn give rise to the functions |opes were parametrized by features relating to the unper-
listed above[15]. The present equations reduce as speciajurbed medium and, in particular, its band structure. These
cases to those used in the analysis of 1D periodic nonlineafcluded features such as group velocity and group velocity
media[8,16]. The applicability of the CME's to multidimen-  dispersion.
sional media will facilitate the extension of previous work in  |n the present work, we consider instead multidimension-
1D devices to higher dimensions. ally periodic media whose built-in linear contrast is small

The CME's presented here can describe resonant light incompared to their average index. The nonlinear component
cident from any direction on a medium having any periodicof their refractive index modulation is necessarily small as
index of refraction profile. This is in contrast to some previ-well as a result of the empirical weakness of nonlinear opti-
ous works wherein the index profile was fixgt’—20. Be-  cal response. We explore intensity-dependent transmission in
cause it is explicitly intended for low-contrast photonic crys-certain systems, predicting optical limiting, and find condi-

tals, the method presented here may provide a more diregbns for intensity-dependent diffraction of an incident beam.
means for their analysis than the alternative of considering

high-contrast method21] in the limit of low index contrast.

Analysis of nonlinear periodic media often proceeds using Il. DERIVATION
perturbative approachg®2-25. These methods treat the
nonlinearity, and possibly the periodicity, as perturbations to We consider isotropic media possessing small, periodic
a medium in which solutions to Maxwell's equations arevariations in both the linear and nonlinear components of
known. In this way, the normal modes of these unperturbedheir indices of refraction. It is by treating the small variation
media, and in particular how they interact and evolve undein the index of the structure as a perturbation to a homoge-
the perturbation, become the focus of the study of nonlineaneous linear medium that we obtain an approximate solution
periodic media. to Maxwell's equations.
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We begin with the wave equation for the electric field

inside a medium perturbed by a position-dependent nonlinear

index of refraction:

n’(x,|E[*) E

VE-V(V-E)= 2 (1)
which has assumed
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The scaleX¢ is that of the periodic index perturbations, so
that the series representing the perturbatighsretain the

Inside the perturbed medium, the index of refraction issame form but withx replaced byXk.

written as

n(x, [E[?) = ng+ £A'(x) + E[E[PAM(x), 2

Equipped with the expansiai®) and the new derivatives
(6), a recurrence equation for tiig,(X 5, T) can be obtained
by substituting the expansions into the wave equatigand

where ng is the index of the linear, homogeneous, unper-then using the linear independence of the powers. of

turbed medium and is a perturbation parameter character-
izing the strength of the index perturbation. The terih)

and A™(x), both periodic, are the linear and nonlinear com-
ponents of the perturbation. The effects of the Kerr nonlin-
earity in the perturbed medium are manifest in the term

[E[PAM(x).
The relevant quantity in the wave equatioh) is the
square of the total index which is given by

n%(x,[E[) = ng + 2noé[ A'(x) + A™(x)[E[]. ()

Because our analysis will terminate at @(l) approxima-
tion of the electric field, the(£) term in Eq.(3) has been
omitted.

The perturbation terma!(x) andA™(x) can be written as
Fourier series using reciprocal lattice vectors:

Alx) = >, ALe C,

allGg

A"(x) = >, ARG,
allG

(4)

The solutions of the wave equatiéh) are parameterized
through & Furthermore, whené=0, those solutions are

known to be plane waves, given that the unperturbed me-
dium is charge free. Accordingly, the field is expanded in an

asymptotic series abodt=0,

E(r,t)= X En(x,DEM, (5)
m=0

from which an approximation to the field can be obtained by

truncating the series at a sufficiently high order.

The perturbation parameteéris additionally used in the
definition of new time and space scalé&=x, Xg=£&x, T
=t, and Ts=¢t whereF and S, respectively, denote fast and

Beginning by collecting terms proportional 8 in Eq.
(1), it is found that, to first order, the recurrence equation is
the wave equation in the unperturbed medium:

g Eq

2 —
VeEo= Ve(Ve-Eo) = T

(7
where V=32 e,/ X ,. Here VZ, Vg are defined simi-
larly.

Equation(7) differs slightly from the wave equation ex-
pected in a charge-free homogeneous medium because of the
presence of th&/(Ve-E;) term. However, taking into ac-
count another of Maxwell’'s equations, it will now be shown
that that term is identically zero. Using the expangidn the
divergence of the electric field is given by

V- E=Vg -Eg+&Vs Eg+ V -(E Emg"‘),
m=1

where the expansioVi- =V- +¢(Vg has been used in the last
line above; withVg- :Eﬁzla/&XF,n and Vg is defined simi-
larly.

Now, invoking the constitutive relatio®=n(r,|E?)E
and noting that the absence of charge in the medium requires
V-D=0, we find that

V-n’E=0

=2n(VN)E+n?V -E=2&n(Ven) -E + n{VF -Ey

+5VS-EO+V-(E Emfm)] 8)
m=1

In light of Eq. (8), it follows that Ve-E=0 identically. The
third line above follows from the index being dependent only
on the fast scal&, so thatVgn=0.

slow. These scales will be considered as being independent, Applying this result to Eq(7) yields the following wave

most importantly when differentiating with respectxar t
in EqQ. (1). The derivatives relevant to the wave equatiin
become

2.
IXE,

7
S
X i0Xs;

(92
2
IXs

52
P

+ &

equation forEy:
9

the general solution to which is a superposition of plane
wavesg, , €k *FTe) wherew andk satisfy [|k[[>= w?n3/c?.
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Here g, denotes one of two unit vectors labeled hy that the transversality of the unperturbed normal modes re-
which, together withk, form an orthogonal triad. quires thatA, -k=0.

For Eq monochromatic with frequenay, it may be writ- Having obtained the leading order term, we now obtain
ten as a sum of plane waves whose wave vectors lie on the; by collecting in the wave equatiofl) all terms propor-
sphere ink space centered at the origin with radiygso/c.  tional to & and requiring that the resulting coefficient &f

We denote this sphere ), so that vanish. Required in the resulting equation is an expression
for the intensity of the leading order term in terms of the
€ mode envelopes. The intensity of the leading order term is
Eo(XpTp) = 2 Ac(Xs T (10) ~ given by
k (S
[Eg?=EoEp= X Ar - Aprel K KI%E,

Here, ¢, denotes the plane wave with wave vectior
ekXre) andB denotes the dependenceEf on all of the
scales. The coefficienta,(Xs, Ts), which depend only on  since gy =€ «)Xr_ Using this expression for the lead-
the slow scales, are the envelopes governing the evolution d@fig order intensity as well as the Fourier series A¢Xg)
the normal modes under the perturbation. It is these enveand A™(X(), Eq. (4), and noting thaie '¢*Fp, =¢,_g, the
lopes that we intend to study through the CME’s. We noteQ(&) equation becomes

K’ ,k”

2 2 ()] 2 2
n2 PE _ 1 oA 1 N2wo IA i Nowd
V2E,-Ve(Vg-E ——0—1) = —|<k-V R e S 7 - W ") - ALA o
( FE1 - Ve(Ve-Ey) 22 ). % i 2 ixg 2" s At T2 T P2 EG: cPk,iPr-G

2 (9
- 2 2 ALA 'Ak")Ak,i€0k+k’—k”—G] : (11
k’,k” G

It is from Eg. (11) that we obtain the coupled mode equations. If Ed.) is cast into the formLE;=f, whereL:V§
-Ve(Ve-)—(n3/c?) Pl dTE is a self adjoint linear operator afich vector whoséth component is given by the right side of Eq.
(11), then for the solutiorE; to exist,f must be in the range df, denotedR(L). This in turn requires thétbe orthogonal to
the null space of the adjoint df, which is simply the null space df, N(L). Here N(L) contains the solutions to the
homogeneous probletrE; =0. In particular,N(L) D {e ¢y : K[| =ngwo/c, & -k =0}. Thus,(ecey,f)==2 (e, iy =0 for all ¢,
such that|k||=nywo/c. Writing this out explicitly results in the following equation:

Nawo A& - AY)

. 1 Now2 ©
|<k Ve A - Ek (& VoA +— )(S%‘Pk) - _0202 > Ag(ec - A )@ or-c)
o dTg o

k' alG
no(l)% © —_—
-5 2 2 AEAG A (e Ar) e e rin-6) =0, (12
k/,k//,km allG

where the notatiorig,-Vg)A, refers to a vector whosgh  each unknown, or each component of the veétpr

component isEf;lek,i(a/aXSi)Ak,j. This set of equations, for Writing Eq.(12) in its final form requires finding all of the

k ranging overS and for anye, such that,-k=0, is the set nonzero projection$ey, ¢x:—c) and{ey, ¢y +kr—km-g). From

of CME’s for the medium at the frequenayy,. the orthogonality of the normal modes, this is equivalent to
While this projection can be carried out for asy satis-  finding all wave vector&k’ and all reciprocal lattice vectors

fying g.-k=0, only two linearly independent equations will G such thatkk’-G=k as well as alk’, k”, k", andG such

result. In particular, all of the equations obtained in this waythat k' +k”-k” -G=k. The modes corresponding to those

are linearly dependent on the two equations that result fromvave vectors are then said to be coupled because, as will be

projecting Eq(11) onto two linearly independent vectags;  shown shortly, the envelopes of these modes influence the

and g , for eachk. This follows from the linearity of Eq. evolution of one another.

(12) with respect tog, and guarantees that of all the projec-  Turning now to the problem of finding the nonzero terms

tions (e ¢y, f) vanish. Thus, given the conditidn-A, =0 as (¢, ¢x_g), We first consider the mode coupling caused by

well as these two linearly independent differential equationsthe linear index perturbation. As is evident in Edl), it is

we find that there exist three independent equations for eadhe linear component of the index perturbation that couples

mode envelopeA,. That is, there exists one equation for modesg,, ¢, corresponding to wave vectors that satikfy
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=k’-G and |k|=|k’||=npwo/c. Now, the condition|k|| each of the double sums therein by the terms corresponding
=|k’[| is equivalent tofk[[*=|k+G]|&? which requires that to those nonzero projections.
k-G=-||G||/2. By the construction of Brillouin zones, the  The effect of the nonlinearity coupling all modes together
wave vectork must then necessarily lie on the face of ais to introduce an infinite number of terms into E@2) via
particular Brillouin zone and, in particular, the face corre-the projections ¢y, ¢y.kr—km—c)- Also, because there exists a
sponding to the reciprocal lattice vec@r Conversely, ok gqyapility condition for each wave vector lying on the
to lie on the face of a Brillouin zone, it is sufficient for sphereS, there exists an infinite number of coupled mode
K Gm(_ﬂ%””/—Z”{((ﬂr SO(;T(e' ret(;:procal Ie:tt:jc?&vEg@é In ;Nh't%h equations. However, only a finite number of equations, those
\(/:vilsvee vector|_< o gg Cou';e depo(z:aonlgr?er wave ;/e(?tbrolg/in;on corresponding to the modes that are coupled by the linear
the spheré, it is necessary and sufficient farto lie on the perturbation, contain terms f_rom both the linear and nonlin-
ear perturbations. If the leading order solutiBgnwere to be

face of a Brillouin zone of the index lattice. A wave vector is v of th d hich led by the li
coupled to more than one other wave vector when it lies orft SUM only of those modes which are coupied by he finear

more than one face of a Brillouin zone. This occurs when thé€rturbation, the number of coupled mode equations would
wave vector lies at the intersection of some number of face8&come finite and the equations themselves would contain
of a Brillouin zone. This number is then the number of di- only a finite number of terms. o
rections to which the given wave vector is coupled. It is Thus, the approach we adopt in finding the CME is, given
coupled by the reciprocal lattice vectors corresponding to th@ wave vectok; that is known to be present in the medium,
faces on which it lies. to expand the leading order soluti@g only in terms Of(pki
This process of identifying the modes coupled by the lin-and the modes to which it is coupled. To solve for the mode
ear perturbation to a given mods, is exhaustive in that all envelopesA,, we use the projectionl2) with two linearly
of the wave vectok’ such thak =k’ -G with [[k’[|=[k] can  independent solutions for each wave vec&gr@y, m=1, 2.
be determined from the position & with respect to the These equations, in conjunction with the conditidp-k=0,
Brillouin zones of the index lattice. Moreover, modes in theprovide a means of determining tiAg.
set of modes that a given mode is coupled to are themselves
coupled only within that set. To see this, suppose that a wave
vector k; was coupled to anothés, and thatk, was itself
coupled toks. This requires thafk,||=|kJl| and|lk,] =[lks] as We now apply the preceding derivation to the investiga-
well as the existence of reciprocal lattice vect@rg andGy3  tion of the intensity-dependent behavior of two-
such thatk,=k; -Gy, andkz=k;~Ga3 This in turn implies  dimensionally periodic nonlinear media. In particular, we
that|[k||=[|k4]| and thatkkz=k; - (G1,+G23) S0 thatk; andks  study the coupling of two modes in a 2D lattice wherein the
are indeed coupled inasmuch @s,—-G,; is itself a recipro-  electric field is assumed to be orthogonal to the lattice plane.
cal lattice vector. We begin with a two-dimensional lattice taken as lying in
Having characterized the modes coupled by the linear inthe xy plane and having any lattice geometry. A mogge
dex perturbation, we now turn to the nonlinear perturbatiomywvhose wave vectok lies on an edge of a Brillouin zone of
A". The nonlinear component of the index perturbationthis lattice, but not at the intersection of any edges, is
couples modes whose wave vectors lie on the SpBGIBd Coupled only to one other modﬂ(,_ The wave vectok’ is
that satisfyk’+k”-k”-G=k for some reciprocal lattice related tok by k’=k+G whereG is the reciprocal lattice
vectorG. Now, all of the wave vectors that are coupled by vector corresponding to the Brillouin zone edge on which
the linear perturbation and that are characterized in the pretes. If this mode is assumed to be present in the medium,
ceding paragraph necessarily differ by a reciprocal latticehen, assuming that the leading order tefij can be ex-
vector. The condition for coupling by the nonlinear perturba-pressed as a sum ¢f and the modes to which it is coupled
tion can be rewritten atk—k")+(k’-k")=G. So, if those by the linear perturbation,
wave vectors are ones coupled by the linear perturbation,
there always exists a reciprocal lattice vec@rsatisfying Eo(XpTp) =e[A1(Xs T ex, + A(Xs T i ],
that condition, insofar ak—k” andk’—k"” are both recipro-
cal lattice vectors in this case. Itis SUfﬁCient, then, for mOdeSNhere is has been add|t|ona||y assumed that the field is po-
to be coupled by the linear perturbation for them to bejarized perpendicular to the lattice plane. The polarization
coupled by the nonlinear perturbation. The converse, howassumption allows for the use of scalar mode envelopes.
ever, is not true. It is not necessary for modes to be couplelioreover, it requires projecting E¢L2) only onto solutions
by the linear perturbation to be coupled by the nonlinearg, ¢, for which g =e,.
perturbation. This can be seen from the conditikr-k”) What results from projecting Eq12) onto e,¢; in this
+(k’—k")=G whenk andk™ are linearly coupled and when case is the CME foA;:
k’=k”. In this casek’ and sok” can be any wave vectors on

I1l. APPLICATIONS

the spheres and still satisfy the nonlinear coupling condi- ) ngwo AL\ Nowf nowg

tion. In particular, the nonlinear perturbation couples to- ~i{Ki-VsAr+ 2 gt 2 AcA; 2

gether all of the modes in the expansi@, a difficulty that s o

we will address shortly. X{ADA(|AL? + 2|A,2) + AR[AZA, + Ay(2] A
Having determined how to identify the nonzero projec- _

tions in Eq.(12), it can be put into its final form by replacing +|Ay]A)]+ ADAAS} = 0.
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FIG. 1. Intensities of the modes with wave vectaq® ki (b) kp, and (c) ks over the two-dimensional crystal whekea.
=110 GW/cni. Herek; is the wave vector of the incident beam.

Similarly, projecting ontoe,¢,: and requiring that the MNXg ~ Ng ~ dZg =
i i : | — Tk 2=k, 2 =k(=0),
terms vanish results in the second coupled-mode equation X! axXL Y X
S S S
. ngwo &AZ nowg | nowg | 2 ~ ~onon . . . . .
—i|lky VA + — o + =5 AcAL + — 5 {AGAA2|A| wherek=(k,,ky,k,) is a unit vector in the direction of the
¢ dls ¢ ¢ wave vectork.

2 nlr A2 2 2 Nl A A2 — Now, if for each envelope a new functioll (Xs,t), (A
+[Ag]?) + AGIAGAL + Ag(|Aq + 2|Ag 9] + AjAAT} = 0. =+ ) is defined such thatA)\(Xs,Ts):A%'"lXS,Ts),
(13) whereT is the change of basis matrix from the original co-
It has been assumed here that the index perturbatiot) ordinate system to the new one, then, using the chain rule,
has inversion symmetry so that(Xg)=A(-Xg). This re-

quires that its Fourier components satigfg=A _¢. It has Vﬁzkxﬁ + ky% +QZ%
also been assumed that the component of the linear index Xs N Tdls
perturbation that is constant in space is zero, so Mat0. ~ A, -~ OA, OA.
Apart from this and the assumption that the electric field is =k otk =,
NKs  YNg X4

perpendicular to the lattice plane, the equations above are the
coupled-mode equations for any two modes lying on a Si“gl%imilarly VA=A [ IXL

edge of the Brillouin zone of the index lattice. So, finally, the equations above reduce, in the new coor-
In the case thak =-G/2, for some reciprocal lattice vec- yinate system, to

tor G, k necessarily lies on a single edge of the Brillouin
zone of the index lattice and is only coupled By to k .<nowot9_Ai+ ngwoa_AL
c dX§ c dTs

‘ noa)(z) | , now(z)
+G=G/2=-k. Labeling the envelope fap, asA, and that -1 + 2 AGAZ+ 2
thogonal to the lattice plane, the coupled-mode equations X{AJA (AL + 2|ALD) + AR[ATZA,

for ¢_, asA_ and continuing to assume that the field is or-

become —
; ; , +AL2AP +|ALD)] + AT AL =0,
) Nowo dA, | Nowg | Nowg
_'<k'VSA++ 2 E)"' 2 AGA-+ 2 ;2 , 2 2
— ’ 2 2 G 2
X{AB'A_(|A_|2 + 2|A+|2) + Ag[AEAq. C dXg c® dTg c
_ XAnlALZ /2+A:2 +AnIA:2E+
+A+(2|A_|2+|A+|2)]+A2|6A_AE}:O, {,0 ,(2 |A+| ,2| |) l_G[ .
+AL(AL+ 2AL) ]+ AZGAT AT =0,
2 2 2
- i(k VA + no_‘,:oﬂ> + no_‘:OA'G,/_\+ + nO_‘;(’ which are the familiar one-dimensional coupled-mode equa-
c® dls C tions [8].

— Thus, for any wave vectdk lying in the plane of a 2D
X{A8|A(2|A+|2+ A + A’(‘;'[AZA+ crystal such thak=-G/2 for some reciprocal lattice vector
2 2 Nl A A21 — G, the electric field can be expanded using modes whose

+AAL+2A )]+ AA A} =0. amplitudes are determined by equations identical to those for
A new coordinate system can be defined such that its axes-a 1D crystal with a normally incident field. An important
say, Xs, Ys, andZg—are, respectively, along a unit vector in consequence of this is that the behavior of pulses incident on
the direction ofk and any two vectors that are orthonormal a 2D crystal from a direction that is parallel to some recip-
to k and to one another. The coordinates of a vector in theocal lattice vector will be the same as that of a pulse inci-
original coordinate system have the following relationshipsdent on a one-dimensional crystal. Pulses in one-dimensional
with Xg of the new system: periodic Kerr-nonlinear structures are studied 14].

036616-5



SHERIFF, GOLDTHORPE, AND SARGENT PHYSICAL REVIEW KO, 036616(2004

Whenk=-G/2 for a reciprocal lattice vectds, the inci- the use of scalar envelopes in the zeroth-order correction to
dent field propagates in a direction normal to a family ofthe electric field.
lattice planes defined b§. The set of lattice planes defined  We take the hexagonal lattice to have lattice spaeiisg
by G will in this case act as the boundaries between thehat is has reciprocal lattice vecto@;,=(4/\3a)(1,0,0
alternating layers in a 1D crystals. The pulse will experienceand G,,=(4/ \;‘ﬁ)(% V3/2,0. The O(&) order correction
what s effectively a square wave index perturbation in onqg the field is taken to consist of the modg, with wave
dimension with Fourier componentty, A, Ag, and S0 ON.  yectork, = (47/ V3a)(%,1/y12,0 and those modes to which

it is linearly coupled. From its position on the Brillouin zone

IV. SOLUTION FOR A HEXAGONAL-LATTICE of the index lattice, the modes to whigl_ is coupled are
PHOTONIC CRYSTAL found to be those with wave vectork,=(47/\3a)

The case that we study in detail here is that of threex(-3,1/V12,0 and k,=(4/\32)(0,1/y3,0). Note that
coupled modes in a two-dimensional nonlinear, hexagona>=K; =Gy, K3=K;=G3 and k3=k,—Gyz with G,3=G;,
photonic crystal throughout which the electric field is polar-—Gs.
ized perpendicularly to the plane of the crystal. We take this So, if Eo=eZEi3:1Aisnki, then using Eq(12), the mode en-
plane to be they plane. This choice of polarization permits velopesA; must satisfy the following equations:

2 2 2

- if(%j—i‘ T %j%) + (AL A+ Al )+ PEBATA(AR + 2(Af7 +]AL (A2 ATIAP
s v s S : ' :

+2(AP+ APT + AL AT+ AJIAL + 20A1 + NPT+ 208 AAA AR +AJs AR+ Ajs AN

+ AGir}|+ijAj2Ak + AGm+ijAJ-A§ + 2Ag'ij+eikAquAk) =0

for cyclic permutations of(i,j,k)=(1,2,3. Note that the and then diminishes in intensity as we move up the lattice in
perturbations are assumed to be even and real soAtpat the direction of its wave vector, since the wave is diffracting
=A_g. into the other two mode$k2 andgok3. The intensities of these
Equations(14) were numerically solved for a specific latter two waves are plotted in Figs(kl and Xc), respec-
crystal whose lattice consists of an array of hexagonally artively.
ranged cylindrical rods embedded in a filler matrix. The lin-  In Fig. 2, the power of each of the three modes exiting the
ear index of refraction was kept constant throughout the laterystal is plotted against the power of the input beam. The
tice, so thatAl(x)=0 for all x and ng=1.5. The Kerr- curve in Fig. 2a) shows that the power of the light exiting
nonlinearity coefficient of the material comprising the rodsthe side opposite the incident end asymptotically approaches
was chosen as X 10°° cn?/GW, while the nonlinear coef- a limiting value as incident power is increased. Thus, this
ficient of the material surrounding the rods was the negativetructure is an optical limiter. Figuregl® and Zc) illustrate
of this. The two-dimensional cross section of the crystal is g@hat as incident power increases, more and more power is
parallelogram of which both sides, oriented at 60° to oneliverted from the mode with wave vectky into the modes
another, are 2 mm in length. The cross section consists afith wave vectorsk, andks.
800 rows and 800 slanted columns of rods. The radii of the At low intensities, the nonlinear components of the refrac-
rods are 0.93um, chosen so that the cross sectional areas dfive indices are very small, so the indices of the two different
the rods equalled the area of the filler around them. materials are nearly matched: incident light passes through
An iterative numerical method incorporating the use ofthe crystal with minimal scattering. As intensity is increased,
finite differences was implemented to simulate a continuoushe difference between the indices of the two materials
wave incident on one side of the crystal. The wave has @rows, and more of the mod@(1 is diffracted into the two
Gaussian beam profile transverse to the incident side, givesther modes.
by |in(x):|pea@-20qx-0-01)2 wherex is the distance along the As can be seen from the inset graphs of Fi@),2at low
incident end of the crystal. The frequency of the input waveincident beam power the exiting intensity of the mage
is 200 THz. essentially retains its original Gaussian character. However,
The steady state intensities of the three coupled waveas the incident power increases, not only does this output
over the two-dimensional lattice are plotted in Fig. 1 for theintensity diminish in peak value relative to the incident
case Ofl =110 GW/cni. The incident wave, which has beam, the output also becomes more distorted and the inten-
the wave vectok;, is directed from the incident end to the sity curve tends toward the right side of the crystal. This can
end opposite the incident end. Figuréa)lshows that the be understood by referring back to Fig. 1. Because the mode
intensity of this wave is greatest where it enters the crystalpy, reaches a higher intensity thaaslz, the difference be-
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FIG. 2. Output power exiting the crystal with of the modes with wave vec®rk, (b) ko, and(c) k3 versus the power of the incoming
beam. The power ia) approaches a limiting value. The plots inse{@fdisplay the transverse profile of the input across the incident end
and the output across the opposite end. Displayed in the ingbj &f the profile of the wave with vectdr, exiting the incident and right
sides of the crystal and, ift), the wave with vectok; exiting the left side.

tween the indices of the materials on the left side of theapplicable to any such lattice. Limiting behavior in the spe-
crystal is greater than the difference on the right, so moreific case of a hexagonal lattice was found by solving those
light from mode<pk1 is diffracted into the other two modes on CME’s numerically. The full generality of the method awaits
the crystal’s left side than on its right. to be exploited by, for example, its application to 3D crys-
tals, 1D or 2D crystals with arbitrary field polarizations, or to

time-dependent problems.
V. SUMMARY

In summary, we have developed a method sufficient for ACKNOWLEDGMENTS
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