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The method of multiple scales is used to develop a procedure for obtaining coupled-mode equations in
low-contrast nonlinear photonic crystals periodic in one, two, or three dimensions. Coupled-mode equations for
three coupled modes in a two-dimensional(2D) hexagonal lattice are obtained in this way and solved numeri-
cally. We show that 2D low-contrast nonlinear photonic crystals support optical limiting and intensity-
dependent diffraction.
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I. INTRODUCTION

Nonlinear photonic crystals may enable ultrafast all-
optical signal processing. One-dimensionally periodic non-
linear media exhibit switching[1–5], pulse compression
[6,7], and limiting [8,9]. Analysis of these devices is facili-
tated by development of one-dimensional(1D) nonlinear
coupled mode equations(CME’s) [8,10].

We develop herein, using the method of multiple scales,
CME’s for low-contrast Kerr-nonlinear photonic crystals in
one, two, or three dimensions. By low contrast we intend that
the variation in the linear index of refraction be small com-
pared to the average index. We place our emphasis on this
class of media because proposals for devices based on it
show great promise[5,8,10,11] and because a recent experi-
mental realization[12] and characterization of such a device
suggests the need for further theoretical development.

The CME’s derived in this paper allow us to analyze the
intensity-dependent behavior of multidimensionally periodic
low-contrast nonlinear media. Intensity-dependent diffrac-
tion in 1D structures underlies phenomena such as optical
bistability [13,14], which in turn give rise to the functions
listed above[15]. The present equations reduce as special
cases to those used in the analysis of 1D periodic nonlinear
media[8,16]. The applicability of the CME’s to multidimen-
sional media will facilitate the extension of previous work in
1D devices to higher dimensions.

The CME’s presented here can describe resonant light in-
cident from any direction on a medium having any periodic
index of refraction profile. This is in contrast to some previ-
ous works wherein the index profile was fixed[17–20]. Be-
cause it is explicitly intended for low-contrast photonic crys-
tals, the method presented here may provide a more direct
means for their analysis than the alternative of considering
high-contrast methods[21] in the limit of low index contrast.

Analysis of nonlinear periodic media often proceeds using
perturbative approaches[22–25]. These methods treat the
nonlinearity, and possibly the periodicity, as perturbations to
a medium in which solutions to Maxwell’s equations are
known. In this way, the normal modes of these unperturbed
media, and in particular how they interact and evolve under
the perturbation, become the focus of the study of nonlinear
periodic media.

The presence of a perturbation, no matter how weak, pre-
cludes independence in the evolution of the normal modes of
the unperturbed medium. However, for a sufficiently weak
nonlinearity, there will exist two distinct scales in space and
time, one proper to the unperturbed normal modes of the
linear photonic crystal, the other to the distances and times
over which they interact because of the perturbation[26].
The evolution of an electromagnetic field within a nonlinear
periodic medium is thus conveniently expressed in terms of
normal modes modulated by slowly varying envelopes. Con-
structing the fields in this manner is central to the method of
multiple scales, which is the basis for our analysis.

The method of multiple scales is a commonly used per-
turbative technique[24,27,28]. It has been deployed previ-
ously in, for example, deep nonlinear one-dimensional grat-
ings[22,29] in which the envelope modulating a Bloch mode
of the periodic unperturbed medium was found to satisfy a
nonlinear Schrödinger equation. More recently, the technique
has been employed in studying high-contrast nonlinear pho-
tonic crystals[23,30]. The equations governing the enve-
lopes were parametrized by features relating to the unper-
turbed medium and, in particular, its band structure. These
included features such as group velocity and group velocity
dispersion.

In the present work, we consider instead multidimension-
ally periodic media whose built-in linear contrast is small
compared to their average index. The nonlinear component
of their refractive index modulation is necessarily small as
well as a result of the empirical weakness of nonlinear opti-
cal response. We explore intensity-dependent transmission in
certain systems, predicting optical limiting, and find condi-
tions for intensity-dependent diffraction of an incident beam.

II. DERIVATION

We consider isotropic media possessing small, periodic
variations in both the linear and nonlinear components of
their indices of refraction. It is by treating the small variation
in the index of the structure as a perturbation to a homoge-
neous linear medium that we obtain an approximate solution
to Maxwell’s equations.
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We begin with the wave equation for the electric field
inside a medium perturbed by a position-dependent nonlinear
index of refraction:

¹2E − ¹ s¹ ·Ed =
n2sx,uEu2d

c2

]2E

]t2
, s1d

which has assumed

In2sx,uEu2d
]2E

]t2
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]n2

]t
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]2n2

]t2
I .

Inside the perturbed medium, the index of refraction is
written as

nsx,uEu2d = n0 + jDlsxd + juEu2Dnlsxd, s2d

where n0 is the index of the linear, homogeneous, unper-
turbed medium andj is a perturbation parameter character-
izing the strength of the index perturbation. The termsDlsxd
andDnlsxd, both periodic, are the linear and nonlinear com-
ponents of the perturbation. The effects of the Kerr nonlin-
earity in the perturbed medium are manifest in the term
uEu2Dnlsxd.

The relevant quantity in the wave equation(1) is the
square of the total index which is given by

n2sx,uEu2d = n0
2 + 2n0jfDlsxd + DnlsxduEu2g. s3d

Because our analysis will terminate at anOs1d approxima-
tion of the electric field, theOsj2d term in Eq.(3) has been
omitted.

The perturbation termsDlsxd andDnlsxd can be written as
Fourier series using reciprocal lattice vectors:

Dlsxd = o
allG

DG
l e−isG·xd,

Dnlsxd = o
allG

DG
nle−isG·xd. s4d

The solutions of the wave equation(1) are parameterized
through j. Furthermore, whenj=0, those solutions are
known to be plane waves, given that the unperturbed me-
dium is charge free. Accordingly, the field is expanded in an
asymptotic series aboutj=0,

Esr ,td = o
m=0

`

Emsx,tdjm, s5d

from which an approximation to the field can be obtained by
truncating the series at a sufficiently high order.

The perturbation parameterj is additionally used in the
definition of new time and space scales,XF=x, XS=jx, TF
= t, andTS=jt whereF andS, respectively, denote fast and
slow. These scales will be considered as being independent,
most importantly when differentiating with respect tox or t
in Eq. (1). The derivatives relevant to the wave equation(1)
become
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]2
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+ j2 ]2
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The scaleXF is that of the periodic index perturbations, so
that the series representing the perturbations(4) retain the
same form but withx replaced byXF.

Equipped with the expansion(5) and the new derivatives
(6), a recurrence equation for theEmsXb ,Tbd can be obtained
by substituting the expansions into the wave equation(1) and
then using the linear independence of the powers ofj.

Beginning by collecting terms proportional toj0 in Eq.
(1), it is found that, to first order, the recurrence equation is
the wave equation in the unperturbed medium:

¹F
2E0 − ¹Fs¹F ·E0d =

n0
2

c2

]2E0

]TF
2 , s7d

where ¹F=on=1
3 en] /]XF,n. Here ¹F

2, ¹F· are defined simi-
larly.

Equation(7) differs slightly from the wave equation ex-
pected in a charge-free homogeneous medium because of the
presence of the¹Fs¹F ·E0d term. However, taking into ac-
count another of Maxwell’s equations, it will now be shown
that that term is identically zero. Using the expansion(5), the
divergence of the electric field is given by

¹ ·E = ¹F ·E0 + j¹S·E0 + ¹ ·So
m=1

`

EmjmD ,

where the expansion¹ · =¹F · +j¹S· has been used in the last
line above; with¹F · =on=1

3 ] /]XF,n and ¹S· is defined simi-
larly.

Now, invoking the constitutive relationD=n2sr , uE2udE
and noting that the absence of charge in the medium requires
¹ ·D=0, we find that

¹ ·n2E = 0

= 2ns¹ndĖ + n2 ¹ ·E = 2jns¹Fnd ·E + n2F¹F ·E0

+ j¹S·E0 + ¹ ·So
m=1

`

EmjmDG . s8d

In light of Eq. (8), it follows that ¹F ·E=0 identically. The
third line above follows from the index being dependent only
on the fast scaleXF, so that¹Sn=0.

Applying this result to Eq.(7) yields the following wave
equation forE0:

¹F
2E0 =

n0
2

c2

]2E0

]TF
2 , s9d

the general solution to which is a superposition of plane
wavesek,l,e

isk·XF−vTFd wherev andk satisfy iki2=v2n0
2/c2.
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Here ek,l denotes one of two unit vectors labeled byl,
which, together withk, form an orthogonal triad.

For E0 monochromatic with frequencyv0, it may be writ-
ten as a sum of plane waves whose wave vectors lie on the
sphere ink space centered at the origin with radiusn0v0/c.
We denote this sphere bysSd, so that

E0sXb,Tbd = o
k

sSd

AksXS,TSdwk . s10d

Here, wk denotes the plane wave with wave vectork,
eisk·XF−v0td, andb denotes the dependence ofE0 on all of the
scales. The coefficientsAksXS,TSd, which depend only on
the slow scales, are the envelopes governing the evolution of
the normal modes under the perturbation. It is these enve-
lopes that we intend to study through the CME’s. We note

that the transversality of the unperturbed normal modes re-
quires thatAk ·k =0.

Having obtained the leading order term, we now obtain
E1 by collecting in the wave equation(1) all terms propor-
tional to j and requiring that the resulting coefficient ofj
vanish. Required in the resulting equation is an expression
for the intensity of the leading order term in terms of the
mode envelopes. The intensity of the leading order term is
given by

uE0u2 = E0Ē0 = o
k8,k9

sSd

Ak8 ·Ak9e
isk8−k9d·XF,

sincewk8w̄k9=eisk8−k9d·XF. Using this expression for the lead-
ing order intensity as well as the Fourier series forDlsXFd
and DnlsXFd, Eq. (4), and noting thate−iG·XFwk =wk−G, the
Osjd equation becomes

S¹F
2E1 − ¹Fs¹F ·E1d −

n0
2

c2

]2E1

]TF
2 D

i

= o
k

sSd F− iSk ·¹SAk,i −
1

2
k ·

]Ak

]XS,i
−

1

2
ki¹S·Ak +

n0
2v0

c2

]Ak,i

]TS
Dwk −

n0v0
2

c2 o
G

DG
l Ak,iwk−G

−
n0v0

2

c2 o
k8,k9

sSd

o
G

DG
nlsAk8 · Āk9dAk,iwk+k8−k9−GG . s11d

It is from Eq. (11) that we obtain the coupled mode equations. If Eq.(11) is cast into the formLE1= f, whereL=¹F
2

−¹Fs¹F ·d−sn0
2/c2d]2/]TF

2 is a self adjoint linear operator andf a vector whoseith component is given by the right side of Eq.
(11), then for the solutionE1 to exist,f must be in the range ofL, denotedRsLd. This in turn requires thatf be orthogonal to
the null space of the adjoint ofL, which is simply the null space ofL, NsLd. Here NsLd contains the solutions to the
homogeneous problemLE1=0. In particular,NsLd. hekwk : iki=n0v0/c,ek ·k =0j. Thus,kekwk ,fl=oi=1

3 eikwk , f il=0 for all wk

such thatiki=n0v0/c. Writing this out explicitly results in the following equation:

iSk ·¹Ssek ·Akd −
1

2
k · sek ·¹SdAk +

n0
2v0

c2

]sek ·Akd
]TS

Dkwk,wkl −
n0v0

2

c2 o
k8

sSd

o
allG

DG
l sek ·Ak8dkwk,wk8−Gl

−
n0v0

2

c2 o
k8,k9,k-

sSd

o
allG

DG
nlsAk9 · Āk-dsek ·Ak8dkwk,wk8+k9−k-−Gl = 0, s12d

where the notationsek ·¹SdAk refers to a vector whosej th
component isoi=1

3 ek,is] /]XS,idAk,j. This set of equations, for
k ranging overS and for anyek such thatek ·k =0, is the set
of CME’s for the medium at the frequencyv0.

While this projection can be carried out for anyek satis-
fying ek ·k =0, only two linearly independent equations will
result. In particular, all of the equations obtained in this way
are linearly dependent on the two equations that result from
projecting Eq.(11) onto two linearly independent vectorsek,1
and ek,2 for eachk. This follows from the linearity of Eq.
(12) with respect toek and guarantees that of all the projec-
tions kekwk ,fl vanish. Thus, given the conditionk ·Ak =0 as
well as these two linearly independent differential equations,
we find that there exist three independent equations for each
mode envelopeAk. That is, there exists one equation for

each unknown, or each component of the vectorAk.
Writing Eq. (12) in its final form requires finding all of the

nonzero projectionskwk ,wk8−Gl and kwk ,wk8+k9−k-−Gl. From
the orthogonality of the normal modes, this is equivalent to
finding all wave vectorsk8 and all reciprocal lattice vectors
G such thatk8−G=k as well as allk8, k9, k-, andG such
that k8+k9−k-−G=k. The modes corresponding to those
wave vectors are then said to be coupled because, as will be
shown shortly, the envelopes of these modes influence the
evolution of one another.

Turning now to the problem of finding the nonzero terms
kwk ,wk−Gl, we first consider the mode coupling caused by
the linear index perturbation. As is evident in Eq.(11), it is
the linear component of the index perturbation that couples
modeswk, wk8 corresponding to wave vectors that satisfyk
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=k8−G and iki=ik8i=n0v0/c. Now, the condition iki
=ik8i is equivalent toiki2=ik +Gi2, which requires that
k ·G=−iGi /2. By the construction of Brillouin zones, the
wave vectork must then necessarily lie on the face of a
particular Brillouin zone and, in particular, the face corre-
sponding to the reciprocal lattice vectorG. Conversely, fork
to lie on the face of a Brillouin zone, it is sufficient for
k ·G=−iGi /2 for some reciprocal lattice vectorG, in which
caseik +Gi=iki andk is then coupled tok +G. So, for the
wave vectork to be coupled to another wave vector lying on
the sphereS, it is necessary and sufficient fork to lie on the
face of a Brillouin zone of the index lattice. A wave vector is
coupled to more than one other wave vector when it lies on
more than one face of a Brillouin zone. This occurs when the
wave vector lies at the intersection of some number of faces
of a Brillouin zone. This number is then the number of di-
rections to which the given wave vector is coupled. It is
coupled by the reciprocal lattice vectors corresponding to the
faces on which it lies.

This process of identifying the modes coupled by the lin-
ear perturbation to a given modewk is exhaustive in that all
of the wave vectork8 such thatk =k8−G with ik8i=iki can
be determined from the position ofk with respect to the
Brillouin zones of the index lattice. Moreover, modes in the
set of modes that a given mode is coupled to are themselves
coupled only within that set. To see this, suppose that a wave
vector k1 was coupled to anotherk2 and thatk2 was itself
coupled tok3. This requires thatik1i=ik2i andik2i=ik3i as
well as the existence of reciprocal lattice vectorsG12 andG23
such thatk2=k1−G12 andk3=k2−G23. This in turn implies
that ik1i=ik3i and thatk3=k1−sG12+G23d so thatk1 andk3

are indeed coupled inasmuch asG12−G23 is itself a recipro-
cal lattice vector.

Having characterized the modes coupled by the linear in-
dex perturbation, we now turn to the nonlinear perturbation,
Dnl. The nonlinear component of the index perturbation
couples modes whose wave vectors lie on the sphereS and
that satisfy k8+k9−k-−G=k for some reciprocal lattice
vectorG. Now, all of the wave vectors that are coupled by
the linear perturbation and that are characterized in the pre-
ceding paragraph necessarily differ by a reciprocal lattice
vector. The condition for coupling by the nonlinear perturba-
tion can be rewritten assk −k-d+sk8−k9d=G. So, if those
wave vectors are ones coupled by the linear perturbation,
there always exists a reciprocal lattice vectorG satisfying
that condition, insofar ask −k- andk8−k9 are both recipro-
cal lattice vectors in this case. It is sufficient, then, for modes
to be coupled by the linear perturbation for them to be
coupled by the nonlinear perturbation. The converse, how-
ever, is not true. It is not necessary for modes to be coupled
by the linear perturbation to be coupled by the nonlinear
perturbation. This can be seen from the conditionsk −k-d
+sk8−k9d=G whenk andk- are linearly coupled and when
k8=k9. In this case,k8 and sok9 can be any wave vectors on
the sphereS and still satisfy the nonlinear coupling condi-
tion. In particular, the nonlinear perturbation couples to-
gether all of the modes in the expansion(5), a difficulty that
we will address shortly.

Having determined how to identify the nonzero projec-
tions in Eq.(12), it can be put into its final form by replacing

each of the double sums therein by the terms corresponding
to those nonzero projections.

The effect of the nonlinearity coupling all modes together
is to introduce an infinite number of terms into Eq.(12) via
the projectionskwk ,wk+k9−k-−Gl. Also, because there exists a
solvability condition for each wave vector lying on the
sphereS, there exists an infinite number of coupled mode
equations. However, only a finite number of equations, those
corresponding to the modes that are coupled by the linear
perturbation, contain terms from both the linear and nonlin-
ear perturbations. If the leading order solutionE0 were to be
a sum only of those modes which are coupled by the linear
perturbation, the number of coupled mode equations would
become finite and the equations themselves would contain
only a finite number of terms.

Thus, the approach we adopt in finding the CME is, given
a wave vectorki that is known to be present in the medium,
to expand the leading order solutionE0 only in terms ofwk i
and the modes to which it is coupled. To solve for the mode
envelopesAk, we use the projection(12) with two linearly
independent solutions for each wave vector,ek,mwk, m=1, 2.
These equations, in conjunction with the conditionAk ·k =0,
provide a means of determining theAk.

III. APPLICATIONS

We now apply the preceding derivation to the investiga-
tion of the intensity-dependent behavior of two-
dimensionally periodic nonlinear media. In particular, we
study the coupling of two modes in a 2D lattice wherein the
electric field is assumed to be orthogonal to the lattice plane.

We begin with a two-dimensional lattice taken as lying in
the xy plane and having any lattice geometry. A modewk
whose wave vectork lies on an edge of a Brillouin zone of
this lattice, but not at the intersection of any edges, is
coupled only to one other modewk8. The wave vectork8 is
related tok by k8=k +G whereG is the reciprocal lattice
vector corresponding to the Brillouin zone edge on whichk
lies. If this mode is assumed to be present in the medium,
then, assuming that the leading order termE0 can be ex-
pressed as a sum ofwk and the modes to which it is coupled
by the linear perturbation,

E0sXb,Tbd = ezfA1sXS,TSdwk1
+ A2sXS,TSdwk2

g,

where is has been additionally assumed that the field is po-
larized perpendicular to the lattice plane. The polarization
assumption allows for the use of scalar mode envelopes.
Moreover, it requires projecting Eq.(12) only onto solutions
ekwk for which ek =ez.

What results from projecting Eq.(12) onto ezwk in this
case is the CME forA1:

− iSk1 ·¹SA1 +
n0

2v0

c2

]A1

]TS
D +

n0v0
2

c2 DG
l A2 +

n0v0
2

c2

3hD0
nlA1suA1u2 + 2uA2u2d + DG

nlfA1
2Ā2 + A2s2uA1u2

+ uA2u2dg + D2G
nl Ā1A2

2j = 0.
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Similarly, projecting ontoezwk8 and requiring that the
terms vanish results in the second coupled-mode equation

− iSk2 ·¹SA2 +
n0

2v0

c2

]A2

]TS
D +

n0v0
2

c2 DG
l A1 +

n0v0
2

c2 hD0
nlA2s2uA1u2

+ uA2u2d + DG
nlfA2

2Ā1 + A1suA1u2 + 2uA2u2dg + D2G
nl Ā2A1

2j = 0.

s13d

It has been assumed here that the index perturbationDsXFd
has inversion symmetry so thatDsXFd=Ds−XFd. This re-
quires that its Fourier components satisfyDG=D−G. It has
also been assumed that the component of the linear index
perturbation that is constant in space is zero, so thatD0

l =0.
Apart from this and the assumption that the electric field is
perpendicular to the lattice plane, the equations above are the
coupled-mode equations for any two modes lying on a single
edge of the Brillouin zone of the index lattice.

In the case thatk =−G /2, for some reciprocal lattice vec-
tor G, k necessarily lies on a single edge of the Brillouin
zone of the index lattice and is only coupled byG to k
+G=G /2=−k. Labeling the envelope forwk asA+ and that
for w−k as A− and continuing to assume that the field is or-
thogonal to the lattice plane, the coupled-mode equations
become

− iSk ·¹SA+ +
n0

2v0

c2

]A+

]TS
D +

n0v0
2

c2 DG
l A− +

n0v0
2

c2

3hD0
nlA−suA−u2 + 2uA+u2d + DG

nlfA−
2Ā+

+ A+s2uA−u2 + uA+u2dg + D2G
nl Ā−A+

2j = 0,

− iSk ·¹SA− +
n0

2v0

c2

]A−

]TS
D +

n0v0
2

c2 DG
l A+ +

n0v0
2

c2

3hD0
nlA−s2uA+u2 + uA−u2d + DG

nlfA−
2Ā+

+ A+suA+u2 + 2uA−u2dg + D2G
nl Ā−A+

2j = 0.

A new coordinate system can be defined such that its axes—
say,XS8, YS8, andZS8—are, respectively, along a unit vector in
the direction ofk and any two vectors that are orthonormal
to k and to one another. The coordinates of a vector in the
original coordinate system have the following relationships
with XS8 of the new system:

]XS

]XS8
= k̂x,

]YS

]XS8
= k̂y,

]ZS

]XS8
= k̂zs=0d,

where k̂ =sk̂x, k̂y, k̂zd is a unit vector in the direction of the
wave vectork.

Now, if for each envelope a new functionAl8sXS,td, sl
= + ,−d is defined such thatAlsXS,TSd=Al8sT−1XS,TSd,
whereT is the change of basis matrix from the original co-
ordinate system to the new one, then, using the chain rule,

¹SA+ = k̂x
]A+

]XS
+ k̂y

]A+

]YS
+ k̂z

]A+

]ZS

= k̂x
]A+

]XS
+ k̂y

]A+

]YS
=

]A+8

]XS8
.

Similarly, ¹SA−=]A−8 /]XS8.
So, finally, the equations above reduce, in the new coor-

dinate system, to

− iSn0v0

c

]A+8

]XS8
+

n0
2v0

c2

]A+8

]TS
D +

n0v0
2

c2 DG
l A−8 +

n0v0
2

c2

3hD0
nlA−8suA−8u2 + 2uA+8u2d + DG

nlfA−8
2A8+

+ A+8s2uA−8u2 + uA+8u2dg + D2G
nl A8−A+8

2j = 0,

− iS−
n0v0

c

]A+8

]XS8
+

n0
2v0

c2

]A−8

]TS
D +

n0v0
2

c2 DG
l A+8 +

n0v0
2

c2

3hD0
nlA−8s2uA+8u2 + uA−8u2d + DG

nlfA−8
2A8+

+ A+8suA+8u2 + 2uA−8u2dg + D2G
nl A8−A+8

2j = 0,

which are the familiar one-dimensional coupled-mode equa-
tions [8].

Thus, for any wave vectork lying in the plane of a 2D
crystal such thatk =−G /2 for some reciprocal lattice vector
G, the electric field can be expanded using modes whose
amplitudes are determined by equations identical to those for
a 1D crystal with a normally incident field. An important
consequence of this is that the behavior of pulses incident on
a 2D crystal from a direction that is parallel to some recip-
rocal lattice vector will be the same as that of a pulse inci-
dent on a one-dimensional crystal. Pulses in one-dimensional
periodic Kerr-nonlinear structures are studied in[11].

FIG. 1. Intensities of the modes with wave vectors(a) k1 (b) k2, and (c) k3 over the two-dimensional crystal whenIpeak

=110 GW/cm2. Herek1 is the wave vector of the incident beam.
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Whenk =−G /2 for a reciprocal lattice vectorG, the inci-
dent field propagates in a direction normal to a family of
lattice planes defined byG. The set of lattice planes defined
by G will in this case act as the boundaries between the
alternating layers in a 1D crystals. The pulse will experience
what is effectively a square wave index perturbation in one
dimension with Fourier componentsD0

nl, DG
l , DG

nl, and so on.

IV. SOLUTION FOR A HEXAGONAL-LATTICE
PHOTONIC CRYSTAL

The case that we study in detail here is that of three
coupled modes in a two-dimensional nonlinear, hexagonal
photonic crystal throughout which the electric field is polar-
ized perpendicularly to the plane of the crystal. We take this
plane to be thexy plane. This choice of polarization permits

the use of scalar envelopes in the zeroth-order correction to
the electric field.

We take the hexagonal lattice to have lattice spacinga so
that is has reciprocal lattice vectorsG12=s4p /Î3ads1,0,0d
and G13=s4p /Î3ads 1

2 ,Î3/2,0d. The Osj0d order correction
to the field is taken to consist of the modewk1

with wave
vectork1=s4p /Î3ads 1

2 ,1 /Î12,0d and those modes to which
it is linearly coupled. From its position on the Brillouin zone
of the index lattice, the modes to whichwk1

is coupled are
found to be those with wave vectorsk2=s4p /Î3ad
3s−1

2 ,1/Î12,0d and k2=s4p /Î3ads0,1/Î3,0d. Note that
k2=k1−G12, k3=k1−G13, and k3=k2−G23 with G23=G12
−G13.

So, if E0=ezoi=1
3 Aiwk i

, then using Eq.(12), the mode en-
velopesAi must satisfy the following equations:

− i
p

a
S1

2

]Ai

]XS
+

1
Î12

]Ai

]YS
+

n0
2v0

c

]Ai

]TS
D +

n0v0
2

c
sDGi j

l Aj + DGik

l Akd +
n0v0

2

c
„D0

nlAisuAiu2d + 2suAju2d + uDGi j

nl uhAi
2Aj

2 + AjfuAju2

+ 2suAiu2 + uAku2dgj + DGik

nl hAi
2Ak

2 + AkfuAku2 + 2suAiu2 + uAju2dgj + 2DG jk

nl AisAjAk + AjAkd + D2Gi j

nl AiAj
2 + D2Gik

nl AiAk
2

+ DGi j
nl+G jk

Aj
2Ak + DGik

nl+G jk
AjAk

2 + 2DGi j+Gik

nl AiAjAk… = 0

for cyclic permutations ofsi , j ,kd=s1,2,3d. Note that the
perturbations are assumed to be even and real so thatDG
=D−G.

Equations(14) were numerically solved for a specific
crystal whose lattice consists of an array of hexagonally ar-
ranged cylindrical rods embedded in a filler matrix. The lin-
ear index of refraction was kept constant throughout the lat-
tice, so that Dlsxd=0 for all x and n0=1.5. The Kerr-
nonlinearity coefficient of the material comprising the rods
was chosen as 4310−5 cm2/GW, while the nonlinear coef-
ficient of the material surrounding the rods was the negative
of this. The two-dimensional cross section of the crystal is a
parallelogram of which both sides, oriented at 60° to one
another, are 2 mm in length. The cross section consists of
800 rows and 800 slanted columns of rods. The radii of the
rods are 0.93mm, chosen so that the cross sectional areas of
the rods equalled the area of the filler around them.

An iterative numerical method incorporating the use of
finite differences was implemented to simulate a continuous
wave incident on one side of the crystal. The wave has a
Gaussian beam profile transverse to the incident side, given
by I insxd= Ipeake

−200sx−0.01d2 wherex is the distance along the
incident end of the crystal. The frequency of the input wave
is 200 THz.

The steady state intensities of the three coupled waves
over the two-dimensional lattice are plotted in Fig. 1 for the
case ofIpeak=110 GW/cm2. The incident wave, which has
the wave vectork1, is directed from the incident end to the
end opposite the incident end. Figure 1(a) shows that the
intensity of this wave is greatest where it enters the crystal

and then diminishes in intensity as we move up the lattice in
the direction of its wave vector, since the wave is diffracting
into the other two modeswk2

andwk3
. The intensities of these

latter two waves are plotted in Figs. 1(b) and 1(c), respec-
tively.

In Fig. 2, the power of each of the three modes exiting the
crystal is plotted against the power of the input beam. The
curve in Fig. 2(a) shows that the power of the light exiting
the side opposite the incident end asymptotically approaches
a limiting value as incident power is increased. Thus, this
structure is an optical limiter. Figures 2(b) and 2(c) illustrate
that as incident power increases, more and more power is
diverted from the mode with wave vectork1 into the modes
with wave vectorsk2 andk3.

At low intensities, the nonlinear components of the refrac-
tive indices are very small, so the indices of the two different
materials are nearly matched: incident light passes through
the crystal with minimal scattering. As intensity is increased,
the difference between the indices of the two materials
grows, and more of the modewk1

is diffracted into the two
other modes.

As can be seen from the inset graphs of Fig. 2(a), at low
incident beam power the exiting intensity of the modewk1
essentially retains its original Gaussian character. However,
as the incident power increases, not only does this output
intensity diminish in peak value relative to the incident
beam, the output also becomes more distorted and the inten-
sity curve tends toward the right side of the crystal. This can
be understood by referring back to Fig. 1. Because the mode
wk3

reaches a higher intensity thanwk2
, the difference be-
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tween the indices of the materials on the left side of the
crystal is greater than the difference on the right, so more
light from modewk1

is diffracted into the other two modes on
the crystal’s left side than on its right.

V. SUMMARY

In summary, we have developed a method sufficient for
obtaining CME’s in any Kerr-nonlinear, low-contrast photo-
nic crystal. On applying this formalism to the case of three
coupled modes in a 2D lattice, we obtained a set of CME’s

applicable to any such lattice. Limiting behavior in the spe-
cific case of a hexagonal lattice was found by solving those
CME’s numerically. The full generality of the method awaits
to be exploited by, for example, its application to 3D crys-
tals, 1D or 2D crystals with arbitrary field polarizations, or to
time-dependent problems.
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